A mathematician, a philosopher and a gambler walk into a bar. As the barman pulls each of them a beer, he decides to stir up a bit of trouble. He pulls a die from his pocket and rolls it ostentatiously on the bar counter: it comes up with a 1.
The mathematician says: ‘The probability that 1 would come up is 1/6, and at the next throw it will be the same. If we roll the die infinitely many times, the relative frequency of the number 1 will converge to 1/6, that is, to one occurrence every six throws.’
The philosopher strokes her chin, and remarks: ‘Well, this doesn’t mean we won’t get the number at the next throw. Actually, it’s physically possible to have the same number on the next 1,000 throws, although that’s highly improbable.’